News from the Aerial Firefighting conference, Part One

Above: the Air Tractor display at the Aerial Firefighting conference.

Here are a few notes that I scribbled in a notebook at the Aerial Firefighting conference in Sacramento this week. This is Part One — I will post Part Two later.

Air Tractor
Mike Schoenau, an Air Tractor dealer out of Tulare, CA, said a new single engine air tanker is being flight tested now. The model name is AT-1002 and will hold up to 1,000 gallons. You will be able to purchase one for yourself for about $2.5 Million.

Fire Boss
Fire BossThe Bureau of Land Management has not released their list of SEATs on contract this year, many of which will be the amphibious Fire Boss, a variant of the Air Tractor 802. Fire Boss doesn’t know if they will be converting the new AT-1002 1,000-gallon SEAT to use floats.

10 Tanker

Rick Hatton, 10 Tanker
RIck Hatton of 10 Tanker Air Carrier.

Their fourth converted DC-10, Tanker 914, will be ready to fight fire this summer. Rick Hatton, the President and CEO of  10 Tanker Air Carrier, said their approval by the Interagency Airtanker Board came to the end of its six-year term, so they retook the grid test in December. Their three DC-10s averaged about 300 hours on fires in 2017, which is more than usual.

I got into a long detailed conversation with Mr. Hatton about how their retardant delivery system can maintain a constant flow, adjusting for the amount of retardant in the tank, drop height, and speed. It usually drops at 150 knots and 200 feet.

Hours per CL-415
As we reported yesterday, Shawna Legarza, the USFS Director of Fire and Aviation, said the two CL-415 scooping air tankers that were on USFS contract in 2017 each had over 400 hours of fire flight time. Due to a reduction in the firefighting budget, the two scoopers had to be cut this year from the exclusive use list. At least a couple are still on a CWN contract, but they may or may not be available if the USFS Calls them When Needed.

Columbia HelicoptersKeith Saylor, Columbia’s Director of Commercial Operations, said the company will have three Type 1 helicopters, CH-47 Chinooks, on exclusive use contract this year. Two have internal tanks and one will use an external bucket.

ConairShawn Bethel, Conair’s Director, International Business Development, said the external tank on the Q400 can be removed in about three hours by 9 to 12 workers. They recently received a contract to supply six Q400’s to France’s Securite Civile (Department of Civil Defense and Emergency Preparedness).

The Q400 MR can carry up to 10,000 liters (2,600 gallons) of water or retardant. In addition to the nine S-2’s and two Q-400’s, France also has twelve CL-415’s and 40 helicopters.

CAL FIRE’s helicopter program

Barry Lloyd describes the coming transition from Hueys

Wednesday morning at the Aerial Firefighting North America 2018 conference in Sacramento, Barry Lloyd, CAL FIRE’s Helicopter Program manager spoke about some of their operational objectives and the possible transition to Sikorsky Firehawk ships.

California’s legislature has approved funding for replacing the 12 Vietnam War era Hueys with new helicopters. The contract has not yet been signed, but all indications are that the purchase will actually occur.

In Mr. Lloyd’s presentation he described the helicopter program and some of the specifications that led to the selection of the winning vendor.

One of his main points was that CAL FIRE’s goal is to respond to every fire in the state for which they have suppression responsibility, within 20 minutes, and contain 95 percent of all fires before they grow to 10 acres.

(UPDATE: we initially had approval to include about half a dozen slides from Mr. Lloyd’s presentation, but on March 16 higher level personnel in CAL FIRE rescinded that approval and asked that we delete them.)

CAL FIRE Firehawk
Model at Sikorsky’s booth at the Aerial Firefighting conference.
CAL FIRE helicopter program manager Barry Lloyd
Barry Lloyd, CAL FIRE Helicopter Program Manager. Photo by Bill Gabbert.

Ken Pimlott discusses the acquisition of a new fleet of helicopters

We interviewed Chief Pimlott at the Aerial Firefighting conference in Sacramento, March 13, 2018.

Above: Model of CAL FIRE Firehawk

Ken Pimlott, the Director California Department of Forestry and Fire Protection, talks about the 2017 wildfire season, aerial firefighting resources available in 2018, and the acquisition of a new fleet of Blackhawk, (or Firehawk) helicopters. We interviewed Chief Pimlott just after he made a presentation at the Aerial Firefighting North America 2018 conference in Sacramento, March 13, 2018.

Shawna Legarza talks about aerial firefighting

The U.S. Forest Service National Director of Fire and Aviation discusses the wildfires in 2017 and the outlook for aerial firefighting in 2018

Above: Shawna Legarza speaks at the Aerial Firefighting North America 2018 conference in Sacramento, March 13, 2018.

(Originally published at 8:18 PDT March 13, 2018)

Shawna Legarza, the U.S. Forest Service National Director of Fire and Aviation, gave a presentation at the Aerial Firefighting North America 2018 conference in Sacramento, March 13, 2018. She said we are no longer experiencing fire seasons — fires now occur year round. Firefighters in Southern California have been saying that for a couple of decades, but the epidemic is spreading.

After her talk we spoke with her for a couple of minutes before she had to leave for a meeting in Arizona. We asked her about the firefighting aircraft that will be available in 2018.

Shawna Legarza fire aviation
Shawna Legarza speaks at the Aerial Firefighting North America 2018 conference in Sacramento, March 13, 2018.


Tanker 170 debuts at Aerial Firefighting Conference

It has a CWN contract but still needs to take a grid test and be approved by the Interagency Airtanker Board.

Above: Air tanker 170 makes a demonstration drop at MCC March 12, 2018. Photo by Bill Gabbert.

(Originally published at 9:55 p.m. PDT March 12, 2018)

(I am currently at the Aerial Firefighting North America 2018 conference in Sacramento. This venue provides a fire hose of information about fighting fires from the air. Over the coming days we will be posting articles generated here.)

It usually takes much longer to convert an aircraft into an air tanker than initially thought. Four years ago after the Aerial Firefighting North America 2014 conference in Sacramento, Ravi Saip (General Manager) and Paul Lane (Vice President and COO) of Air Spray gave me a tour of the BAe-146 they had just started working on. The interior and the cockpit had been gutted, but there was much more that had to be done.

Fast forward to today, March 12, 2018 when the aircraft, now morphed into an air tanker, made a demonstration drop at Sacramento McClellan Airport in front of a crowd of spectators at the 2018 version of the Aerial Firefighting conference.

Air tanker 170 BAe-146
Air tanker 170 at MCC March 12, 2018. Photo by Bill Gabbert.

The aircraft holds 3,000 gallons in a gravity-powered tank, like the other BAe-146’s and RJ85’s operated by Aero Flite and Neptune, but it looks very different. Some of the more recently developed air tankers have very distinct non-traditional livery, such as the 747 and 737. Air Spray has taken it a notch higher, also using a vinyl wrap, but their version has a forest scene on the aft section. It certainly can’t be mistaken for another air tanker. The “N” number is hard to read (it’s N907AS) but that could be easily fixed.

Air tanker 170 BAe-146
A drawing of the retardant tank on air tanker 170 at MCC March 12, 2018. Photo by Bill Gabbert.
Air tanker 170 BAe-146 tank
The retardant tank on air tanker 170 at MCC March 12, 2018. Photo by Bill Gabbert.

I appreciate the efforts of the designers of automobile bodies and aircraft livery that create something that is not like all of the others that are on the road or in the air — like the Plymouth Prowler, the Chevrolet SSR truck, and the Chrysler PT Cruiser. That does not mean I would buy one, but there is something to be said for not being boring.

Air tanker 170 BAe-146
Air tanker 170 at MCC March 12, 2018. Photo by Bill Gabbert.

In 2015 the U.S. Forest Service awarded call when needed contracts for 22 large air tankers. The interesting thing about that list was — at least half of them did not exist, or at least they were years away from being converted into air tankers. Air Spray, Neptune, Coulson, 10 Tanker, and Aero Flite have all benefited as their aircraft slowly made the transitions into reality. Air Spray’s N907AS is the latest.

Air tanker 170 BAe-146
Air tanker 170 at MCC March 12, 2018. Photo by Bill Gabbert.

But Tanker 190 still has to prove itself, and a grid test is on its calendar in April along with the other steps on the way to approval by the Interagency Airtanker Board.

In addition to this aircraft, Air Spray owns four other BAe-146’s. Two of those are currently being converted into air tankers.

Air tanker 170 BAe-146
Air Spray personnel at MCC March 12, 2018. L to R: Dennis Murray, Josh Pavia, Michael Young, Lowell Slatter, Robert Maggetti, Brian Baldridge, Dennis Chrystian, Heather Jay, Paul Lane, Ravi Saip.

Drone lands, catches fire, ignites wildfire

(UPDATED at 11:27 a.m. MST March 7, 2018)

The drone that landed, caught fire, and ignited what became a 335-acre fire in Northern Arizona was battery-powered and approximately 16″ x 16″, a spokesperson for the Coconino National Forest said. The operator reported the fire and was later cited for causing timber, trees, slash, brush, or grass to burn. The spokesperson did not know exactly how the drone caught fire.


(Originally published at 4:32 p.m. MST March 6, 2018)

Just a couple of hours ago we wrote about how proud the Department of the Interior is of their drone program (as they should be). And there’s no doubt that Unmanned Aerial Systems can play an important part in improving situational awareness for wildland firefighters.

But today  investigators have determined that the preliminary cause of a wildfire north of Flagstaff is a drone that landed and caught fire. At 3:25 p.m. MST Tuesday the Coconino National Forest said firefighters had stopped the spread of the resulting wildfire after it burned 335 acres near Kendrick Park by Forest Roads 514 and 524.

kendrick fire map arizona drone

There is no information yet about the operator of the drone or if it was powered by a battery or gasoline.

All of these photos were provided by the Coconino National Forest.

Kendrick Fire Arizona

Kendrick Fire Arizona

Thanks and a tip of the hat go out to Tom.
Typos or errors, report them HERE.

Drone detects spot fire while other aircraft grounded

It occurred on a wildfire in Southern Oregon during very smoky conditions

The Department of the Interior has been proactive and innovative recently regarding the use of Unmanned Aerial Systems, or drones, in land management. And they don’t hesitate to push out information about how they are using the small remote controlled helicopters and fixed wing aircraft.

In January the Department released a large, fancy, colorful infographic extolling the virtues of the drone program. They reported that 312 unmanned aircraft managed by the Office of Aviation Services supports everything from fighting wildfires to monitoring dams and mapping wildlife. In 2017, 200 certified DOI UAS pilots flew 4,976 flights in 32 states. The largest category of flights, 39 percent, was for training and proficiency, with 30 percent used for mapping and 14 percent for interagency fire management.

Now another large, fancy, colorful infographic (1.1 MB) is touting how a drone detected a spot fire across a fireline. It happened during very smoky conditions last year in Oregon:

“August 2017, two of the Alaska Type 1 Incident Management Team’s remote pilots flew a drone in support of a burnout operation on the Umpqua North Fire Complex in Southern Oregon. The burnout was conducted as a necessary means to restrict the fires encroachment towards a five mile stretch of highway 138, where the Toketee Dam power plant, houses, and the USFS Toketee Ranger Station were located. The values at risk were estimated to be worth in excess of $50 million. Smoke limited visibility to 100 feet and grounded all manned aircraft. The drone used was a small battery powered quadcopter fixed with an IR [infrared] camera providing a live video feed to firefighting personnel.

“The flight’s objective was to provide situational awareness for the division supervisor during the burnout operation” the infographic says. “A secondary objective was to monitor an active section of the fire, which was sending airborne firebrands behind the established control line. During the operation, a spot fire was discovered utilizing the IR [infrared] camera feed. The location was established, division supervisor notified and several resources dispatched to contain it before it got out of control.”

drone wildfire detection
A portion of the DOI’s latest drone infographic.

According to the DOI, drones:drone cost

  • “Limits exposure and reduces risk to pilots and wildland firefighters.
  • Able to fly when manned aircraft are not able.
  • Limits cost – Each 3DR Solo drone costs $1,800. The IR sensor package costs $6,000. Other costs are the wages for the operator. If that mission was flown with a contracted light helicopter: AStar 350 B3 costs $3,480.00 for daily availability and $1,500 per flight hour.
  • Easily packable and able to fly in remote locations.”

NTSB and Forest Service work to reduce in‑flight structural failures on air tankers

Metal fatigue cracking was identified as an issue in several crashes

T-910 on the Soberanes Fire south of Monterey, California in 2016. Photo by Wally Finck.

(Originally published at 9:50 a.m. MST March 5, 2018)

The National Transportation Safety Board published this article March 1, 2018 on their NTSB Safety Compass website. It provides details about how the U.S. Forest Service and the NTSB have worked together to attempt to mitigate some of the risks of flying old aircraft converted to air tankers low and slow close to the ground while experiencing high load factors.

By Jeff Marcus and Clint Crookshanks

One enduring image of the fight against forest fires, like those that devastated California last year, is of a large airplane flying low and dropping red fire retardant. These firefighting air tankers are invaluable, and they operate in extreme environments.

Over the years, we’ve investigated several accidents involving firefighting aircraft, identifying issues and making recommendations to ensure the safety of these important assets. For example, in 1994, we investigated an accident in which a retired Air Force Lockheed C-130A Hercules, which had been converted into a firefighting airplane and was under contract to the US Forest Service (USFS), crashed while battling a fire in the Tehachapi Mountains near Pearblossom, California, killing all three flight crewmembers. In June 2002, another retired Air Force Lockheed C-130A Hercules, also converted into a firefighting aircraft and under contract to the USFS, crashed while dropping fire retardant near Walker, California, killing the three flight crewmembers onboard. Just a month later, a retired Navy Consolidated Vultee P4Y-2 Privateer, again under contract to the USFS to fight forest fires, crashed while maneuvering to deliver fire retardant near Estes Park, Colorado, killing both flight crewmembers. We determined that the probable cause in each of these accidents was in‑flight structural failure due to fatigue cracking in the wings, and we concluded that maintenance procedures had been inadequate to detect the cracking.

Firefighting operations inherently involve frequent and high-magnitude low-level maneuvers with high acceleration loads and high levels of atmospheric turbulence. A 1974 NASA study found that, at that time, firefighting airplanes experienced maneuver load factors between 2.0 and 2.4—almost a thousand times more than those of aircraft flown as airliners. The NASA study concluded that, because the maneuver loading in firefighting airplanes was so severe relative to the design loads, the aircraft should be expected to have a shortened structural life. Repeated and high‑magnitude maneuvers and exposure to a turbulent environment are part of firefighting service, and these operational factors hasten fatigue cracking and increase the growth rate of cracking once it starts.

Aerial firefighting is an intrinsically high-risk operation; however, the risk of in‑flight structural failure is not an unavoidable hazard; rather, fatigue cracking and accelerated crack propagation should be addressed with thorough maintenance programs based on the missions flown. Aircraft maintenance programs, which are typically developed by airplane manufacturers, usually point out highly stressed parts that should be inspected for signs of fatigue cracking, and they give guidance on how often these parts should be inspected. When specifying a maintenance program, manufacturers typically consider the expected loads that an airplane will encounter; however, in the past, for many aircraft used in firefighting operations, very little, if any, ongoing technical and engineering support was available because the manufacturer no longer existed or did not support the airplane, or the military no longer operated that type of aircraft. The maintenance and inspection programs being used for the firefighting aircraft mentioned above did not account for the advanced age and the more severe stresses of the firefighting operating environment.

Range Fire air tanker
Air tanker 12 on the Range Fire in Southern California, August 27, 2016. Photo by Kern County Fire Department.

As a result of our investigations, we issued safety recommendations to the USFS to hire appropriate technical personnel to oversee their airtanker programs, improve maintenance programs for firefighting airplanes and to require its contractors to use these programs. The USFS responded promptly and effectively, substantially improving the safety of its firefighting operations. The USFS hired a team to build out its Airworthiness Branch, to lead their effort to comply with the NTSB recommendations, and with this staff of engineers and technicians made needed revisions to the contracting, oversight, and operations of the USFS program using airplanes to fight forest fires. The agency hired aircraft engineering companies that performed in‑depth stress analyses on the firefighting airplanes in operation. The results were used to improve maintenance programs by identifying parts of the aircraft structure in need of continuing inspections and proposed the time and use intervals needed between inspections to prevent fatigue cracks from developing into catastrophic structural failures. The USFS also outfitted firefighting aircraft (tankers as well as helicopters and lead aircraft) with equipment that measures and records the actual flight loads experienced while fighting forest fires, then used that data to further improve the inspection program for airplanes in use and to develop programs for new types of airplanes being introduced to fight forest fires.

Clint Crookshanks, an NTSB aviation structural engineer and aircraft accident investigator who worked on these airtanker accidents, helped the USFS review its contractors’ maintenance and inspection program documents and provided advice on how they could better address our recommendations. On November 5, 2010, the USFS issued its first iteration of a Special Mission Airworthiness Assurance Guide for Aerial Firefighting and Natural Resource Aircraft, which contained the method, schedule, and standards for ensuring the airworthiness of firefighting aircraft. The USFS has revised the guide twice since then, with the latest revision issued on November 6, 2015. The guide now includes standards for USFS aircraft contracts, which are required for all aircraft used in USFS firefighting missions, satisfying our recommendations. Since these improvements were implemented, no aircraft performing aerial firefighting missions for the USFS have experienced an in‑flight structural failure.

We continue to work with the staff at the USFS to improve the safety of firefighting flights. At the beginning of January 2018, Clint attended a meeting in Missoula, Montana, to discuss the current and future large airtankers on contract to the USFS. Our recommendations are still relevant to the USFS and its contract operators and were the basis for most of the discussion at the Missoula meeting. The current USFS contract requirements have ensured that all contractors have effective maintenance and inspection programs that account for the extreme operating environments seen in aerial firefighting. Aircraft providing aerial firefighting services contain equipment that records the loads on the aircraft and even provides an alarm in real-time when a flight’s loads may have overstressed the airplane. In addition, the data recorded is downloaded and supplied to Wichita State University for mission profile development. British Aerospace, which originally manufactured the jet powered BAe 146 and RJ-85 airplanes currently used for USFS firefighting operations, provides technical support for these airplanes’ operators. The US Air Force also provides firefighting service using C-130 airplanes equipped with a Mobile Airborne Firefighting System (MAFFS) to assist the USFS on an as needed basis. The manufacturer of the C-130, Lockheed-Martin, is working with the Air Force to continually monitor and analyze the loads on airplanes used in the firefighting mission.

The importance of keeping these unique aircraft and their crews safe and functional becomes even more evident during every forest fire season. The lessons we’ve learned from our accident investigations have been used to identify needed changes that have made it possible to more reliably and safely fight forest fires from the air and protect life and land.


Jeff Marcus is an Aviation Transportation Safety Specialist in the NTSB Office of Safety Recommendations and Communications. Clint Crookshanks is an aviation structural engineer and aircraft accident investigator in the NTSB Office of Aviation Safety.

Thanks and a tip of the hat go out to Isaac.
Typos or errors, report them HERE.