Helicopter crashes, starts fire, rescuers burned over

helicopter crash site
An overview of the crash site and the extraction point for the three victims. Photo from the report.

A report has been released for a helicopter crash in a very remote area of Nevada that started a fire, injured two passengers, and resulted in rescuers being burned over. It happened August 18, 2018 about 10 miles north of Battle Mountain.

One of the passengers called 911 on a cell phone at 1357:

We just got into a helicopter crash…three occupants, all of us are alive and managed to get out…started a big fire, fire is burning all around us right now…one of the guys hit his head pretty hard…you’re gonna have to get a helicopter, it’s the only way to get in here.

Adding to the complexity was the fact that several different agencies and organizations had various responsibilities: Lander County Dispatch, Battle Mountain Volunteer Fire Department, local EMS services, a medical helicopter, Elko Interagency Dispatch Center, and Central Nevada Interagency Dispatch Center.

As might be expected the complex communication chain between the victims and the actual emergency responders created some difficulties, including a delay in extracting the three personnel.

The Facilitated Learning Analysis does not speculate what caused the crash of the helicopter that was transporting two biologists on a chukar survey, but it started a fire, which was named Sheep Creek. The biologists and the pilot self-extracted, one of them with what appeared to be a serious head injury, and they all hiked up a steep slope to a flat bench where they awaited a helicopter. About two hours after the 911 call the three were evacuated from the scene by a firefighting helicopter that was on scene, and possibly also a medical helicopter. The report is not clear about this.

helicopter crash site
A closer view of the crash site. Photo from the report.

Meanwhile a volunteer fire department Type 4 engine that had responded in a search and rescue mode toward the crash site found that the condition of the road they were traveling on deteriorated from a 2-track road to a 4×4 trail, and finally ended. At that point the fire was closing in on their location. The rookie firefighter and the Fire Chief got out, and leaving their wildland fire personal protective gear in the truck, began to spray water around the vehicle.

From the report:

Within seconds, the fire was all around Pumper- 2. Both individuals were caught outside of the vehicle while trying to spray water. Neither had on their personal protective equipment (PPE) when the burnover occurred. The Chief stated, “We were in a rescue mission, so we had no PPE on.”

During the burnover, the firefighter jumped off the back of Pumper-2, started to run around the vehicle and then took refuge under Pumper-2. “I was burning and screaming and hunkered down underneath behind the rear tires.” After the burnover, the Chief yelled for the firefighter, whom he could not see anywhere. He eventually located the firefighter under Pumper-2.

After sustaining significant burns, both the Chief and firefighter got back into the vehicle, with the Chief driving, continuing down drainage. The fire was behind them as they continued driving through the black towards the bottom of the drainage. Pumper-2 drove through the bottom of the drainage over the rough terrain until getting stuck. Both individuals got out of the vehicle and proceeded to hike up the steep ridge until they got on top of the ridge to establish communications.

At 1646, Lander County Dispatch received a 911 call from the firefighter, who said he and the Chief had been burned. “We need help.” Dispatch was asking questions to establish a location, but the cell phone was breaking up. The firefighter said, “We might need a helicopter because we are on the ridge…in the black…wearing a red shirt and just uphill right of the engine.”

Suppression resources were actively engaged on the wildland fire during the burnover of the Pumper-2. The Incident Commander of the wildland fire was unaware that Pumper-2 was on the fire until well after the burnover occurred. The dispatch centers did not know the location of Pumper-2.

At 1745 the injured firefighters were located and extracted by the air medical and suppression helicopters to awaiting ground medical resources at Battle Mountain Airport. At about 1900, fixed-wing aircraft flew the injured firefighters to the University of Utah Burn Center in Salt Lake City, Utah.

The FLA points out a number of organizational and human issues that are worthy of consideration. One topic that was not thoroughly addressed in the report was the dispatchers and firefighting personnel at times did not know the exact location of the crash site or the victims, and were not aware that the engine was responding or it’s location following the injuries to the two firefighters.

Even when, eventually, the location of emergency responders will be able to be tracked on an incident, biologists and volunteer firefighters will probably be some of the last personnel to employ this capability on a routine basis.

A few more details available about the helicopter accident at Donnell Fire in California

A company representative described it as a forced landing

The pilot walked away from what is now being described as a forced landing of the helicopter that went down August 25 while on a water-dropping mission on the Donnell Fire on the Stanislaus National Forest in California. After walking some distance from the accident site and being treated on-scene by paramedics the pilot was admitted to a hospital for observation overnight. He is expected to make a full recovery.

Ian Gregor, communications manager with the Federal Aviation Administration, said on Monday that the helicopter “crashed and rolled” at the accident site.

According to an August 27 article in the Union Democrat, Kevin Shields, a representative of Roberts Aircraft, said their Bell 212 had a forced landing due to “some unknown event that was occurring with the aircraft.”

Bell 212 Kachina
File photo of a Bell 212 operated by Kachina Aviation, taken by Akradecki March 16, 2007.

Helicopter crashes at helispot on Donnell Fire in California

The pilot walked away with minor injuries

A helicopter crashed at a helispot while working on the Donnell Fire in Northern California yesterday, August 25. Chris Fogle, the Incident Commander of the Incident Management Team running the fire said the pilot walked away with minor injuries which were treated on-site by paramedics.

The helicopter was described as a medium ship that was on a water dropping mission.  The pilot’s name has not been released but the family has been notified. The only location given was that it occurred “on the southwest fire perimeter within the containment zone”.

Since the Donnell Fire started on August 1 it has burned 35,000 acres in the Sierra Nevada Mountains in the Stanislaus National Forest 34 air miles south of Lake Tahoe. Most of the fire that is still active is 7,000 to 9,000 feet above sea level.

The fire is a “less than full suppression fire” and Sunday morning had seven helicopters assigned. It has destroyed 135 structures.

helicopter water drop Donnell Fire
A screenshot captured from a video on InciWeb, showing a helicopter (unknown which one) on a water dropping mission on the Donnell Fire at Eagle Creek. It was posted to InciWeb August 16, 2018.

SEAT makes hard landing while fighting wildfire in Washington

Pilot self-extricates, was transported hospital

On August 14 a Single Engine Air Tanker made a forced hard landing while working on the Horns Mountain Fire in Northern Washington. The pilot was transported to a hospital.

Air Spray USA, Inc, the company that owns the aircraft, stated:

The aircraft experienced an unknown problem on the fire it was working near the US/Canadian border. The pilot executed a forced landing on a logging road and was able to exit the aircraft. He was transported to the hospital. No other information is available at this time. An investigation is in process.

Public Lands Commissioner Hilary Franz said on Twitter that the pilot is OK and receiving medical attention.

KXLY reported that the Department of Natural Resources told them the pilot survived the crash and was able to crawl to a nearby road to get help.

The aircraft was one of five amphibious FireBoss air tankers assigned to the fire Tuesday.

map Horns Mountain Fire
Map showing the location of the Horns Mountain Fire.

The lightning-caused fire has burned 832 acres in Washington southeast of Christina Lake, BC since it started August 11.

Thanks and a tip of the hat go out to Robert.
Typos or errors, report them HERE.

One injured in CAL FIRE CWN helicopter hard landing

helicopter crash Oakdale California
CWN helicopter crashes while en route to Weed, CA. Photo Courtesy of Stanislaus Consolidated Fire Protection District via Twitter.

A helicopter under a Call When Needed contract with CAL FIRE experienced a hard landing July 24 while ferrying from Southern California to Weed where it was needed to assist with a fire. According to Stanislaus County Sheriff’s Sgt. Frank Soria, the
helicopter began experiencing problems while enroute. As the pilot turned toward the Oakdale Airport the aircraft crashed.

Sgt. Soria said the pilot refused medical treatment but a passenger was admitted to a hospital.

Thanks and a tip of the hat go out to Al.
Typos or errors, report them HERE.

In Oregon, drone crashes, starts wildfire

Above: The burned drone. Photo by Cameron Austin-Connolly

(Originally published on Wildfire Today July 11, 2018)

A small drone started a vegetation fire when it crashed near Springfield, Oregon this week. On July 10 Cameron Austin-Connolly was flying his drone over a field when a large unleashed dog left its owner, ran and jumped on him. The impact knocked the controller out of his hands and the drone immediately went out of control and crashed. As you can see in the video (that Mr. Austin-Connolly gave us permission to use) within about three seconds the still operating camera recorded flames.

You can also see two dogs running at Mr. Austin-Connolly.

He wrote on his Facebook page:

My drone crashes and when I go to look for it I saw smoke and flames so I called 911. Springfield FD quickly showed up and put out the flames. They even returned my drone and gopro. The Fire Marshall said that was their first drone fire.

In case you’re wondering about the reaction of the dogs’ owner, Mr. Austin-Connolly said he just kept walking and didn’t say anything.

Mr. Austin-Connolly told us, “it is a hand built first person view drone, or FPV done. Some people also call them racing drones since they are fast.”

He said it was using a lithium polymer, or “lipo”, battery.

Most small consumer-sized drones use lithium ion batteries, while racing drones generally operate with lithium polymer batteries.

The battery that was in the drone. The label says: “Infinity, 1300 MAH, race spec”. Photo by Cameron Austin-Connolly

In March we wrote about the crash of a drone that started a 335-acre fire on the Coconino National Forest in Northern Arizona. Few details about that drone were available, except that it was about 16″ x 16″.  The comments by our readers developed a great deal of information about rechargeable batteries and the possibility of them catching fire. We also learned about several other drone crashes that started fires.

In May we published an article about the fact that electric vehicles with lithium-ion batteries present a complex and hazardous situation for firefighters responding to a vehicle accident.

The fact is, there are many examples of both lithium ion and lithium polymer batteries catching fire. There is no doubt that when a lithium ion battery is subject to an impact, a short circuit can occur in one or more of the cells, creating heat which may ignite the chemicals inside the battery. This can spread to the adjoining cells and lead to the condition known as “thermal runaway” in which the fire escalates. If as in a vehicle, there are thousands of batteries, it can be extremely difficult to extinguish the blaze. And worse, it can reignite days or weeks later.

When compact fluorescent light bulbs were introduced they saved energy but were slow to get fully bright and many people thought the color of the light was unpleasant. I knew then that it was immature lighting technology. There were going to be better options. Now LED bulbs save even more energy, come in various light temperatures (colors), and illuminate at near full brightness immediately. For now, they are expensive, but will still pay for themselves in three to five years.

Lithium ion and lithium polymer batteries are the fluorescent bulbs of battery technology. They are too heavy, don’t hold enough power, and they too often catch fire. No one wants to be on an airplane when flames erupt from an e-cigarette, cell phone, wireless headphones, or laptop computer, all of which can ignite even when turned off.

So until that next major step in battery technology occurs, what do we do about drones? Is the risk so low that we should not be concerned? When land managers enact fire restrictions during periods of high wildfire danger, do we also prohibit the use of drones? Should drones ever be allowed over vegetation in a fire-prone environment during wildfire season? And what about the hundreds of drones owned and operated by the Department of the Interior that flew 5,000 missions last year? Not all are battery operated, but some are.

We thank Mr. Austin-Connolly for providing the information, photos, and the video. When we asked, he said, “If my experience can be helpful I’m all for it.”

Thanks and a tip of the hat go out to Kelly.
Typos or errors, report them HERE.

Remembering the crews of Air Tankers 123 and 130

air tanker 130 memorial
Screenshot from the KOLO TV video.

KOLO TV has a very nice four-minute video tribute to the crew that was killed June 17, 2002 when their C-130A air tanker, Tanker 130, crashed while fighting a wildfire near Walker, California killing all three on board. It includes a short interview conducted minutes before the accident with Steve Wass, one of the pilots. The other two crew members were Craig LaBare and Mike Davis. The video has the well-known footage of the wings falling off the air tanker as it crashed just after making a drop.

A month after the crash of T-130, a P4Y-2 Privateer, T-123, crashed while maneuvering over a fire near Estes Park, Colorado. Both pilots, Ricky Schwartz and Milt Stollak were killed.

Tanker 123 crash near Estes Park, CO, July 18, 2002
Tanker 123 crash near Estes Park, CO, July 18, 2002. Credit: Matt Inden – Special to The News

The NTSB determined that the cause of both crashes was in‑flight structural failure due to fatigue cracking in the wings, and that maintenance procedures had been inadequate to detect the cracking.

These accidents changed aerial firefighting. The Forest Service banned certain models of old war birds and developed new contract specifications regarding inspections and stress monitoring. During the next ten years the large air tanker fleet atrophied, shrinking from 44 on exclusive use contracts in 2002 to 9 in 2012. Not much was done to restore the program until eight days after two pilots were killed in crashes of two P2V air tankers on the same day in 2012  — the Forest Service issued contracts for seven “next generation” air tankers manufactured in the 1980s and 1990s, taking a small step toward partially rebuilding the fleet. As the fire season began in 2018, 13 large air tankers were on federal exclusive use contracts.

memorial at Greybull, Wyoming air tanker crashes 2002
A memorial at Greybull, Wyoming for the crashes of two air tankers in 2002, T-123 and T-130.

NTSB and Forest Service work to reduce in‑flight structural failures on air tankers

Metal fatigue cracking was identified as an issue in several crashes

T-910 on the Soberanes Fire south of Monterey, California in 2016. Photo by Wally Finck.

(Originally published at 9:50 a.m. MST March 5, 2018)

The National Transportation Safety Board published this article March 1, 2018 on their NTSB Safety Compass website. It provides details about how the U.S. Forest Service and the NTSB have worked together to attempt to mitigate some of the risks of flying old aircraft converted to air tankers low and slow close to the ground while experiencing high load factors.


By Jeff Marcus and Clint Crookshanks

One enduring image of the fight against forest fires, like those that devastated California last year, is of a large airplane flying low and dropping red fire retardant. These firefighting air tankers are invaluable, and they operate in extreme environments.

Over the years, we’ve investigated several accidents involving firefighting aircraft, identifying issues and making recommendations to ensure the safety of these important assets. For example, in 1994, we investigated an accident in which a retired Air Force Lockheed C-130A Hercules, which had been converted into a firefighting airplane and was under contract to the US Forest Service (USFS), crashed while battling a fire in the Tehachapi Mountains near Pearblossom, California, killing all three flight crewmembers. In June 2002, another retired Air Force Lockheed C-130A Hercules, also converted into a firefighting aircraft and under contract to the USFS, crashed while dropping fire retardant near Walker, California, killing the three flight crewmembers onboard. Just a month later, a retired Navy Consolidated Vultee P4Y-2 Privateer, again under contract to the USFS to fight forest fires, crashed while maneuvering to deliver fire retardant near Estes Park, Colorado, killing both flight crewmembers. We determined that the probable cause in each of these accidents was in‑flight structural failure due to fatigue cracking in the wings, and we concluded that maintenance procedures had been inadequate to detect the cracking.

Firefighting operations inherently involve frequent and high-magnitude low-level maneuvers with high acceleration loads and high levels of atmospheric turbulence. A 1974 NASA study found that, at that time, firefighting airplanes experienced maneuver load factors between 2.0 and 2.4—almost a thousand times more than those of aircraft flown as airliners. The NASA study concluded that, because the maneuver loading in firefighting airplanes was so severe relative to the design loads, the aircraft should be expected to have a shortened structural life. Repeated and high‑magnitude maneuvers and exposure to a turbulent environment are part of firefighting service, and these operational factors hasten fatigue cracking and increase the growth rate of cracking once it starts.

Aerial firefighting is an intrinsically high-risk operation; however, the risk of in‑flight structural failure is not an unavoidable hazard; rather, fatigue cracking and accelerated crack propagation should be addressed with thorough maintenance programs based on the missions flown. Aircraft maintenance programs, which are typically developed by airplane manufacturers, usually point out highly stressed parts that should be inspected for signs of fatigue cracking, and they give guidance on how often these parts should be inspected. When specifying a maintenance program, manufacturers typically consider the expected loads that an airplane will encounter; however, in the past, for many aircraft used in firefighting operations, very little, if any, ongoing technical and engineering support was available because the manufacturer no longer existed or did not support the airplane, or the military no longer operated that type of aircraft. The maintenance and inspection programs being used for the firefighting aircraft mentioned above did not account for the advanced age and the more severe stresses of the firefighting operating environment.

Range Fire air tanker
Air tanker 12 on the Range Fire in Southern California, August 27, 2016. Photo by Kern County Fire Department.

As a result of our investigations, we issued safety recommendations to the USFS to hire appropriate technical personnel to oversee their airtanker programs, improve maintenance programs for firefighting airplanes and to require its contractors to use these programs. The USFS responded promptly and effectively, substantially improving the safety of its firefighting operations. The USFS hired a team to build out its Airworthiness Branch, to lead their effort to comply with the NTSB recommendations, and with this staff of engineers and technicians made needed revisions to the contracting, oversight, and operations of the USFS program using airplanes to fight forest fires. The agency hired aircraft engineering companies that performed in‑depth stress analyses on the firefighting airplanes in operation. The results were used to improve maintenance programs by identifying parts of the aircraft structure in need of continuing inspections and proposed the time and use intervals needed between inspections to prevent fatigue cracks from developing into catastrophic structural failures. The USFS also outfitted firefighting aircraft (tankers as well as helicopters and lead aircraft) with equipment that measures and records the actual flight loads experienced while fighting forest fires, then used that data to further improve the inspection program for airplanes in use and to develop programs for new types of airplanes being introduced to fight forest fires.

Clint Crookshanks, an NTSB aviation structural engineer and aircraft accident investigator who worked on these airtanker accidents, helped the USFS review its contractors’ maintenance and inspection program documents and provided advice on how they could better address our recommendations. On November 5, 2010, the USFS issued its first iteration of a Special Mission Airworthiness Assurance Guide for Aerial Firefighting and Natural Resource Aircraft, which contained the method, schedule, and standards for ensuring the airworthiness of firefighting aircraft. The USFS has revised the guide twice since then, with the latest revision issued on November 6, 2015. The guide now includes standards for USFS aircraft contracts, which are required for all aircraft used in USFS firefighting missions, satisfying our recommendations. Since these improvements were implemented, no aircraft performing aerial firefighting missions for the USFS have experienced an in‑flight structural failure.

We continue to work with the staff at the USFS to improve the safety of firefighting flights. At the beginning of January 2018, Clint attended a meeting in Missoula, Montana, to discuss the current and future large airtankers on contract to the USFS. Our recommendations are still relevant to the USFS and its contract operators and were the basis for most of the discussion at the Missoula meeting. The current USFS contract requirements have ensured that all contractors have effective maintenance and inspection programs that account for the extreme operating environments seen in aerial firefighting. Aircraft providing aerial firefighting services contain equipment that records the loads on the aircraft and even provides an alarm in real-time when a flight’s loads may have overstressed the airplane. In addition, the data recorded is downloaded and supplied to Wichita State University for mission profile development. British Aerospace, which originally manufactured the jet powered BAe 146 and RJ-85 airplanes currently used for USFS firefighting operations, provides technical support for these airplanes’ operators. The US Air Force also provides firefighting service using C-130 airplanes equipped with a Mobile Airborne Firefighting System (MAFFS) to assist the USFS on an as needed basis. The manufacturer of the C-130, Lockheed-Martin, is working with the Air Force to continually monitor and analyze the loads on airplanes used in the firefighting mission.

The importance of keeping these unique aircraft and their crews safe and functional becomes even more evident during every forest fire season. The lessons we’ve learned from our accident investigations have been used to identify needed changes that have made it possible to more reliably and safely fight forest fires from the air and protect life and land.

 ****

Jeff Marcus is an Aviation Transportation Safety Specialist in the NTSB Office of Safety Recommendations and Communications. Clint Crookshanks is an aviation structural engineer and aircraft accident investigator in the NTSB Office of Aviation Safety.

Thanks and a tip of the hat go out to Isaac.
Typos or errors, report them HERE.